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Dawn Discovery Mission

* The name “Dawn” refers to the “Dawn of the solar system”
when the formation of all the planets we know today (and a

few we can only infer or don’t know about!) came into
existence.

* By visiting the two largest bodies between Mars and Jupiter
we see early planet building frozen in time.



Dawn Mission Itinerary

Mars gravity
assist

Vesta orbit Ceres orbit

Aug ‘11 - Aug ‘12 ‘
ug ug Feb ‘15 - Now

Feb ‘09 _ _
Dawn is a Reconnaissance and

mapping mission —

- Compile a global color map

- Compile a topographic map

- Map the elemental composition

. - Map the mineralogical composition
Launched « Map the gravity field

Sept 27, 2007 . Search for moons




Dawn Discovery Mission

~Why Vesta and Ceres? -

« By visiting Vesta and Ceres we have visited 50% of the
mass of the entire asteroid belt. These two are the giants
in this region of space.

* Both are planetary embryos — their development ended
when Jupiter formed stripping the region of all planet
building matter.

* Vesta is a rocky world like Mercury, Venus, Earth and
Mars

* Ceresis an ice world like the moons of the giant outer
planets and possibly like the Kuiper Belt bodies (Pluto)




Where?




upiter




We orbited Vesta and are now orbiting Ceres
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The 1,200 Pounds of Xenon and lon Engines

Can Accelerate the Dawn spacecraft Again As My\ch As

& -
aN

The 700,000 Pound Delta Il Rocket Did During Lau_nck.\




Dawn is necessarily quite large because of its solar panels

lon propulsion is power hungry
- and the Dawn must travel far
from the Sun
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Post Launch Spacecraft Propulsive capability
measured in units of kilometers per second
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Post Launch Spacecraft Propulsive capability
measured in units of kilometers per second
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Most capable space vehicle
ever made — following the
g most demanding itinerary
ever attempted
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We Began Our 6 Billion Kilometer Journey
On Top A Rocket in 2007



Launch Vehicle
The Delta Il Heavy

It started Dawn on its way at 41,000
km/hour away from the Earth on
September 27, 2007.

After that, Dawn’s ion engines take
over.

My job was to aim this rocket and
then aim the ion engines during the
long cruises and orbital operations at
Vesta and Ceres

ALL DONE USING OPTIMAL CONTROL
TO SOLVE AN END TO END PROBLEM
THAT MAXIMIZES THE “DRY”
SPACECRAFT MASS DELIVERED TO
CERES




Dawn Launched into the Dawn on September 27, 2007




From an optimal control standpoint, the controls for launch —
very high thrust, and the controls for ion propulsion - low-thrust
and high efficiency are very different. However, both have to be
solved for s:multaneously (can’t separate launch and space

cruise into independent problems). : \




What is so challenging and interesting about trajectory design?

* No way to repair the spacecraft after launch — need
redundancy for all systems, and careful load balancing

* Trajectories must survive temporary loss of thrust

. %ﬂiﬂleldswknownbef@redou arrive, your plan has to

" be instantly adaptable to-any-possible gravity we encounter
/Téfégmuemustjccmm D:Imta@ref\ctlon

//JK is in-motion - == SN Carss)
Have toflyas efficiently as-possibte —m-at-h.aptlm%“ __yf
. Accp,u.nHoﬂ?rr’oFm the execution of maneuvers |

/ﬁust account for error in where we think the spacecraft is
* Must catch all human errors before they reach the spacecraft!
* Must prove your plans can react to all manner of error and
mishap in concert

And this is just the beginning!



What is so challenging and interesting about trajectory design?

Multi-body dynamics

Solar radiation pressure

Relativity (orbit determination)

Non-spherical (rotating) gravity fields to surfiin

In flight redesigns are common — things break you have to
solve wholly unanticipated problems — must innovate

Messy real world constraints you'll will not find in academic
treatments

Keeping the scientists happy (ever changing requireme S
we explore a new world) ?@
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Ceres’ layers

Thin, dusty
outer crust

Water-ice layer

Rocky
inner core

NASA, ESA, and A. Field STScl



And it all starts on the
launch pad: One giant
coupled problem.

Each point represents an
optimal trajectory all the way to
Ceres with fixed launch direction
and energy

Different colors represent the
nominal and extremes of what
the launch vehicle may do

This is September 27, 2007 the
day we actually launched

Positive C3 dispersion
4 Negative C3 dispersion
4  Nominal C3

n]li Buﬁnﬂ%dﬁmdow

15 minute window

30 Min (94.3157,94.7657,98.5157,102.2657,103.0457) [Deg], Dis, Nom FP=23.6831,23.9639

(
20 Min (95.4267,95.8767,98.3767,100.8767,101.6567) [Deg], Dis, Nom FP=24.2052,24 4098
15 Min (95.8907,96.3407,98.2157,100.0907,100.8707) [Deg], Dis, Nom FP=24.401,24.5817
10 Min (96.2637,96.7137,97.9637,99.2137,99.9937) [Deg], Dis, Nom FP=24.5513,24.7134

2 Min (97.3209,97.7709,98.0209,98.2709,99.0509) [Deg], Dis,Npm FFP=24.6418,25.0581




What We Got:

Positive C3 dispersion
4 Negative C3 dispersion
4  Nominal C3

n]|| ute W'&ndow
minute window

15 minute window

30 Min (94.3157,94.7657,98.5157,102.2657,103.0457) [Deg], Dis, Nom FP=23.6831,23.9639

(
20 Min (95.4267,95 8767,98.3767,100.8767,101.6567) [Deq], Dis, Nom FP=24.2052 24 4098
(

15 Min (95.8907,96.3407,98.2157,100.0907,100.8707) [Deg], Dis, Nom FP=24.401,24.5817
10 Min (96.2637,96.7137,97.9637,99.2137,99.9937) [Deg], Dis, Nom FP=24.5513,24.7134
2 Min (97.3209,97.7709,98.0209,98.2709,99.0509) [Deg], Dis,Npm FFP=24.6418,25.0581




x10' Missed Maneuver Analysis for Vesta Orbit Insertion

2t
1F
cap+3.14d
Periapsis 6483 km
Period 20.71 days
Capture Vesta
or 1525.2053 days into flight

July 30, 2010 18:19:13
Mass 970.8678 [kg]
Radius 14071.07 [km]

>
-2r > ap+2.48d
P Fepas ¢k
cap+3.12h Period 30.2 days
Periapsis 8244 km
cap+0.243d
-3} Periapsis 8151 km & cap+1.92d
Period 1,123 dagp+6.799d Periapsis 7007 km
Periapsis 7707 krgap+1.36d Period 44.9 days
Period 172.5 dayperiapsis 7320 km
Period 76.3 days
-4 ] ] ] ] ] ] ] ]
-3 -2 -1 1 2 3 4
X ikm) 4



\
/ Missed maneuver analysis for Ceres Capture




\
/ Missed maneuver analysis for Qeres Capture

This one actually happened!
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State:

x coordinate of spacecraft] 1 (t) x component of thrust
y coordinate of spacecraft v(t) = |v(t) | = | y component of thrust
z coordinate of spacecraft v3(t)

x velocity of spacecraft
y velocity of spacecraft
z velocity of spacecraft
mass of the spacecraft.

Dynamic control:

Parameters (" static control”):

w2
w3
wy
w3
w=| wg
wy
wg
wq
w10

_w1_

| W1

date o f trajectory start

total flight time

longitude of the ascending node
argument of the periapsis

true anomaly

Orbital C3

Periapsis radius

inclination

tnitial mass

thuster specific impulse

solar array size

z component of thrust.




%% The optimal Control problem:

Objective: mazimize,y) ,, (Spacecraft final mass)

X(t): spacecraft state v(t): thrust vector W: parameters



%% The optimal Control problem:

Objective: mazimize,y) ,, (Spacecraft final mass)

dx(t)
dt

State equation: =T (x(t),v(t),w,t)  Physics

X(t): spacecraft state v(t): thrust vector W: parameters



%% The optimal Control problem:

Objective:

State equation:

Initial Condition:

maximizc,, (t)

X(t): spacecraft state

YW

(Spacecraft final mass)

v(t): thrust vector W: parameters



%% The optimal Control problem:

Objective: MATIMIZE () (Spacecraft final mass)
dx(t

State equation: di ) = T(x(t),v(t),w,1)

Initial Condition: x(ty) = I'(w)

Target Final State: \P(aj(t)? U(?)?w?t) = or < ]{:1 Arrive at

X(t): spacecraft state v(t): thrust vector W: parameters



%% The optimal Control problem:

Objective: mazimize,y) ,, (Spacecraft final mass)
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State equation:

Initial Condition: x(ty) = I'(w)

Stay > 500
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X(t): spacecraft state v(t): thrust vector W: parameters



%% The optimal Control problem:

Control Dynamics Limitation
(simplest example):

Dynamic limitations represent engineering or operational
requirements. For example, continuous, very slow, slewing of the
spacecraft to change the thrust direction is not always desirable.
Instead, the thrust direction is altered quickly at regular
intervals.

X(t): spacecraft state v(t): thrust vector W: parameters



%% The optimal Control problem:

Objective: mazimize,y) ,, (Spacecraft final mass)

Physics of
Space Flight

X(t): spacecraft state v(t): thrust vector W: parameters



dx
dt

%% What is in the state equation:
| Spacecraft:

N\

—\

T 46 (1)

LN

v(t% R
T7(t T

ad(z,t) + Eg\f’fdi“ Grav; (x,t)

x7(t)

X(t): spacecraft state

m(v,xz,t)

_<—Velocity

«—Acceleration

I*-Mass change

v(t): thrust vector W: parameters



%% What is in the state equation:
Spacecraft:

54:6 (t) | Velocity

$7(t) -+ Ei:f tes G(’I"(I’UZ (5(;7 t) cceleration

m(’U, £, t) |+«—Mass change

Thrust: acceleration = thrust force/mass

X(t): spacecraft state v(t): thrust vector W: parameters



%% What is in the state equation:

T 46 (1)

+ Eg\f’fdi“ Grav; (x,t)

Spacecraft:

- «Velocity

«Acceleration

«—Mass change

Radiation pressure: acceleration = radiation force/mass

X(t): spacecraft state v(t): thrust vector W: parameters



%% What is in the state equat/on
Spacecraft:

;(; 46 (t) | Velocity

dx
_ Rad x 1) Nb di - i
_ _|_ E o 1€8 Gfr.a,vz T t) Acceleration

dt
|«—Mass change
Thrust
Radiation pressure

lon thruster propellant rate: dmass/dt = function of spacecraft
thrust magnitude, spacecraft position, and TIME.

dmass/dt is a discontinuous function of time because we must
change engines as we travel.

X(t): spacecraft state v(t): thrust vector W: parameters



dx
dt

%% What is in the state equat/on
Spacecraft:

5(34 6 (t) | Velocity
— 1 Rai%t} ) + 5 G?"(I’UZ' (SL‘,t <«Acceleration
_ /‘ m(’U, x,t |«—Mass change

Thrust

Radiation pressure

- lon thruster propellant rate

Gravitational terms: N - body gravity, gravitational
harmonics, and first order relativistic corrections

X(t): spacecraft state v(t): thrust vector W: parameters



%% What is in the state equation: Gravity

Simple point mass representation:

Newton’s
Grav,(= — ﬂz{rzg L Law of
[|7:]] Gravity

Extended, rotating, body representation (spherical harmonics):

N ; oo N Rﬁ . .
G'raxu,;:v {% SN _'r:*' P (sin())(Crmecos(mA) + Sm,.,sm(m/\))}
i n=0m=0 1y

A

Rotation matrix from inertial frame to body rotating frame



%% The optimal Control problem:

Objective: mazimize,y) ,, (Spacecraft final mass)

Launch
Vehicle

X(t): spacecraft state v(t): thrust vector W: parameters



%% An Example of the Initial Condition Equation:

N ~\

initial position ) X (Qw,v,Cs, Rp, 1)
F(’UJ) — {netial ’l)BlOCity V (ijj v, 037 R_?% Z)
inetial mass | mlve(cs) + wy

"
ey




%% An Example of the Initial Condition Equation:

Optimization parameters:
Launch vehicle final state

initial position )
['(w) = { initial velocity
inetial mass | mlve(cs) + wy

"
ey




%% An Example of the Initial Condition Equation:

Position and velocity the Launch vehicle can deliver the
Dawn spacecraft to immediately after the 37 stage burnout

N\

initial position < X (QW, v, C?)aRpa Z) >
[(w) = 1 indtial velocity 1 =4y (Q, w, v, Cs, Ry,
inetial mass | mlve(c3)+ wg




Mass

%% An Example of the Initial Condition Equation:

\

initial position ) X (Qw,v,Cs, Rp, 1)

[(w) = { initial velocity ; = | v, C3, Ry, 1)
inetial mass | @ wy

Launch vehicle performance:
Delivered mass versus delivered
energy to the Earth Escape hyperbola

"

Escape Velocity



%% Navigating With lon Engines ...

Many of the procedures and algorithms developed to
guide traditional chemical propelled spacecraft through
the Solar System do not extend to ion propelled
spacecraft.

Chemical engines are typically on for minutes and off
(coasting) for years

lon engines are on for years (Dawn will likely operate its
thrusters about 6 years!)

Mission and trajectory design are much more difficult
because of the near-continuous thruster operation.



Trajectory Design as an Optimization Problem

* Trajectory design is generally posed as an optimal control
problem with a variety of (sometimes peculiar)
constraints.

Get from point A to point B delivering the
maximum payload

Subject to the laws of physics, engineering
constraints, and programmatic constraints



%% Models Required:

e Solar array performance as a function of temperature and
illumination.

e Solar array degradation due to radiation damage

e Spacecraft subsystems (non-ion engine) power consumption
e lon engine performance (generally non-linear!)

e Launch vehicle performance curves

e Mass distribution models for all gravitating bodies

e Spacecraft component reflectivity for radiation pressure

e Spacecraft attitude control system propellant usage



%% Constraints:

lon engine operational limits

Launch vehicle ascent geometry limits

Start, end, and total time of flight

Propellant consumption (maximum tank size)

Solar array thermal limits

lon engine thrust beam Sun relative direction constraints
Periodic forced coasting for communications

Trajectory failsafe constraint (robust against thrust outages)
Targeted intermediate state conditions

Targeted final state conditions



%% Characteristics of the OCP:

e Nonlinear objective, constraints, and state equation

e Non-convex

e System response is " Knife edged” (need 2" order method)

e Controlis discontinuous in time

e State equation is discontinuous in time

e State equation is non-autonomous

e Large changes in physical scale occur over the problem’ s time
horizon

e Very high precision solutions are required for flight

Tough problem!



%% Method of Solution:

e Nonlinear optimal control based on Bellman’ s principal of
optimality (Bellman, 1957), or more specifically the Hamilton,
Jacobi, Bellman equation

e | developed an algorithm specifically to solve these types of
problems:

“Static Dynamic Control” (Whiffen, 1999)



Vesta Trajectory Zoom



What Is An lon Engine?

« Traditional chemical rockets are near the peak
theoretical capability

« To get the propellant exiting much faster, we need a
non-thermal means of propellant acceleration. Best
chemical exhaust speed is about 13,000 [km/hr]

The ion engine is really a particle accelerator. Particle
accelerators on Earth are limited only by the speed of
light.



How an Ion Engine Works

Electron Gun [ q

Xenon
Propellant

Xenon propellant is injected into the propulsion chamber



How an Ion Engine Works

Electron Gun [ q

Xenon
Propellant

The propellant 1s 1onized by electron bombardment, the + grid
and thruster walls (anodes) absorb all the excess electrons.



How an Ion Engine Works

Electron Gun [ q

Xenon
Propellant

+ +
) )
< <
N N

av)
= =

Permanent Ring magnets increase the electron residence time
to improve 1onization efficiency



How an Ion Engine Works

»

“lon Optics
SR
*

Electron Gun [ g

Xenon
Propellant

Electrostatic
acceleration

The 10ns diffuse towards the holes in the + grid, feel the - grid,
are electrostatically accelerated to high speed, and focused
through the holes on the - grid into space.



How an Ion Engine Works

Electron Gun [ g

Xenon
Propellant

Magnet 2110C° Magpoiffl} ©

Electrol Q““
Neutralize?
A neutralizer electron gun is required to inject electrons into

The 10n beam to keep the spacecraft from building up charge
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Nstar engine test fire
JPL/NASA



Dawn Mission Itinerary

Mars gravity
assist

Vesta orbit Ceres orbit

Aug ‘11 - Aug ‘12

Feb ‘15 - Now

Launched
Sept 27, 2007



Traveling With 'th | Eng-.ines
Co nﬂus . |

The work descrlbed he;e/
Propulsion Laboratory,§
under contract with’ tlé(e)/ N
Administration. ﬁj/pyr ch

Tech nology quern!‘nﬁnﬁ



Scientific Instruments and objectives

Framing Gammaray and  vjsjple and Gravity
Cameras Neutron Detector  |nfrared
spectrometer

At Both Vesta and Ceres:

* Global color map * Map mineralogical composition
* Topographic map * Map gravity field
* Map elemental composition ¢ Search for moons



The Solar System “snow Iine’:




Bellman’s Principal

An optimal trajectory has the property that whatever the
initial state and the initial control were, the remaining
control must constitute an optimal trajectory with regard
to the state resulting from the initial controls.



Bellman’s Principal

final state x(t;)

O

Initial state x(0)=X,

Suppose this is an optimal trajectory from points A to



Bellman’s Principal

final state x(t;)

The Optimal control u™(t) t=0 to t. delivers us from A to

Initial state x(0)=X,

t

AND: minimizes [F(x, u,t)dt  subject to dx/dt = T(x(t),u(t),t)

t=0



Bellman’s Principal

Initial state x(0)=X,

“New” Initial state x(At)=X;

Consider an intermediate point B



Bellman’s Principal

u”*(t=0 to At)

Initial state x(0)=X,

“New” Initial state x(At)=X;

The optimal control u™(t=0 to At) got us to point B



Bellman’s Principal

O

“New” Initial state x(At)=X,

Now forget how we got to B, consider the optimal control
problem from B to C with the same performance measure



Bellman’s Principal

Bellman says the answer is the
remaining optimal control you
obtained for the full A to C problem:

u*(t=At to t,) @

“New” Initial state x(At)=X,

L
;F(X,u*, t)dt

t=At



Bellman’s Principal

Proof by contradiction: assume
a better control exists B to
then the original A to

problem must not be optimal —
it can be improved by using the

better B to C solution. @

’

“New” Initial state x(At)=X,



Optimal Thrust Vectors!



Traveling With lon Engines
Conﬂusmns .
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Dawn at Ceres
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Maneuverabllity with ion propulsion



Static Dynamic Control

e General Form of the objective:

, N
J* = min [N F(a(t), v(t), w, t)dt+ 5 Gla(ts), v(ts), w, ti, )

e The general state equation:

dx(t)
dt

= T(x(t),v(t),w,t) z(t=ty) =T(w)



Static Dynamic Control

e General Form of the objective:

T = mig [ F(a(t), ot), w, tdt+ _%1 Qla(ts), v(t:), w, t,9)

w,v(t
e The general state equation:
dx(t)

dt

e Dynamic limitations on the control (Optional)

fluy,w,t,1)  for t=1ty to t, | Period1’
flug,w,t,2)  for t=1, to ty | Pericd2’

= T(x(t),v(t),w,t) z(t=ty) =T(w)

v(t) =

flun,w,t, N) for t =ty 1 to ty.| “Period N”



Static Dynamic Control (Period Formulation)

e Define the (not necessarily optimal) objective going forward
for period N:

I
J(x,un,w,t) = /f " F(x(r), flun,w, 7, N), w, 7)dT+G(x(tn), un, w,tn, N)

e Goal: Develop a system of O.D.E.s that generates the
derivatives of J with respect to x, u, and w. Next, use those
derivatives at t,_, make a locally optimal feedback law for u in
covering period N.

e By analogy, construct a feedback law for the period N-1
assuming the feedback law for period N is used.

e Repeat this process backward to period 1. Use the derivatives
of J with respect to w at t, to compute an update for w.



Static Dynamic Control

Definition of J:

I
J(x,un,w,t) = /f " F(x(r), flun,w, 7, N), w, 7)dT+G(x(tn), un, w,tn, N)

we can write J at time t as a function of J at time t+At by
splitting the integral:

J(z, un, w,t) = /:Jr fF(:E(T),f(uN,w,T, N),w, T)dr+J(z(t4+At), un, w, t+At)



Static Dynamic Control

Definition of J:

I
J(x,un,w,t) = /f " F(x(r), flun,w, 7, N), w, 7)dT+G(x(tn), un, w,tn, N)

we can write J at time t as a function of J at time t+At by
splitting the integral:

J(x, un, w,t) = /:Jr fF(x(T),f(’U,N,’IU,T, N),w,T)dT

Taylor series

J(z(t4+AD), uy, w, t4+AL) = J(z(t), uy, w, ) +(J+J. & +J. wy +J ) At+O(AL?)



Static Dynamic Control

Definition of J:

I
J(x,un,w,t) = /f " F(x(r), flun,w, 7, N), w, 7)dT+G(x(tn), un, w,tn, N)

we can write J at time t as a function of J at time t+At by
splitting the integral:

J(x, un, w,t) = /:Jr fF(x(T),f(’U,N,’IU,T, N),w,T)dT

Taylor series

J(z(t4+AD), uy, w, t4+AL) = J(z(t), uy, w, ) +(J+J. & +J ity +J, D) At+O(AL)

Remove terms that are zero
J(z(t+ A, un, w, t+At) = J(z(t), un, w, t) + At + T TAt+ O(At?)



Static Dynamic Control

Substituting the Taylor series back in:
1+ At , )
— At = /f F(x(r), flun,w, 7, N}, w, 7)dT + J.TAt + O(At%)

Next divide by A t and let 4 t go to zero:

—Ji(z,un,w,t) = Fla, flux,w,t, N),w, t)+J (2, un, w, )T (z, flun,w,t, N),w,t)

This is a partial differential equation for J. It can be
differentiated to obtain analogous equations for the first two
derivatives of J with respect to x, u, and w.




Static Dynamic Control
P.D.Es for the first two derivatives:

~Jiw = Fy + T, T + 10,
Subscripts
T+TJ, denote
derivatives

__JﬁL::}aL+'Jt

LU

__JﬁJ::}%J+-Jt Iﬁ+4TtJ

) we

An example of one of the six P.D.E.s for the second derivatives

////////

n n,
__Jﬁm::-F%x%'2:t&mmka%irrﬁ]%'J%;Fr%'jijﬁn%'E:L&{ﬂz}mﬁagﬂ
1—1 1—1



Static Dynamic Control
P.D.Es for the first two derivatives:

+
—J, te — EIJ + '].’I}.’L‘T + I;; '].’L‘

_Jtu — Fu, + Jt

LU

T+1T,J,

_th — Eu + Jt T_|_Tf=]

) we

An example of one of the six P.D.E.s for the second derivatives

////////

:? :) Z]T[Z] —I_ J’I"I‘TI‘ _I_ T:ifj,’,(;,’,(; _I_ Z 'J.’L‘ I:{lj:ljj.(;:.(; [Z) :) :]
=1




Static Dynamic Control

We can develop a system of ordinary differential equations
to find J and its derivatives by using the definition of the total
time derivative. Jis both an explicit function of time and an
implicit function of time through the state x time evolution:

_327

Where: T = —
ot



Static Dynamic Control

We can develop a system of ordinary differential equations
to find J and its derivatives by using the definition of the total
time derivative. Jis both an explicit function of time and an
implicit function of time through the state x time evolution:

J = J:f:t + J:I::I;T
Similarly for the

derivatives of J: | ,
Ju= Jur T+ J“;T

Etc.



Static Dynamic Control

Substituting the total time derivative back into the original
P.D.E.s we get O.D.E.s for the derivatives of J:

: f
Ju= _EI — ﬂLJ:I:

Jw= —Fy, — Tf v

w

Example of 1 of the 6 second order equations:

J.’II'?L: _EIIU JII,'Z—'U Tf IU Z J [ ] IU[ :]



Static Dynamic Control

Substituting the total time derivative back into the original
P.D.E.s we get O.D.E.s for the derivatives of J:

J-u,: _EI - ,I:JI
Jw= _Fw Tf J

w

Example of 1 of the 6 second order equations:

J.’II'?L: _EIIU JII,'Z—'U Tf IU Z J [ ] IU[ :]

Notice that there is no longer a third derivative of J present — Yay!



Static Dynamic Control

The terminal condition for each O.D.E. is the corresponding
derivative of the terminal cost function G:

J(Sl?(tj\r), Un, w, tN) = G(LE (tN); Uy, W, tN; N)
'].’I:(x(tf\’r)y {U’f\’r) w; tj\[) — G.’I:(x(tf\’r)) UI\;T, w) tf\?, N)

And so on for all first and second derivatives of J...



Static Dynamic Control

The first and second derivatives of J at time t,_, can be

obtained by integrating the systems of O.D.E.s backward in
time from t, to t,.;.

Given the first and second derivatives of J at time t,,,
(denoted J ) a Taylor series expansion of J at time t,,, is:

~

— _ _ 1 _ _ _
J(0x, duy, dw) = J+ Ji.(S:zz + J,Z(Suj\r + Jijcsw + §5$tJf,;:,;5:1: + 62" T bun + dw' T, 0un

1 — | —
‘|‘§5U§\* Ju-'u,(suN + §5wf S dw + 5$t=]:1:-11)5w-



Static Dynamic Control

The first and second derivatives of J at time t,_, can be

obtained by integrating the systems of O.D.E.s backward in
time from t, to t, ;.

Given the first and second derivatives of J at time t,,,
(denoted J ) a Taylor series expansion of J at time t,,, is:

~

— _ _ 1 _ _ _
J(0x, duy, dw) = J+ Ji.(S:zz + J,Z(Suj\r + Jijcsw + §5$tJf,;:,;5:1: + 62" T bun + dw' T, 0un

+%5U§\f*jmt,5uf\’ + %5wt7ww5w + 5$tj:1:w5w-
To find the locally optimal feedback law for u in period N:

Vs =0



Static Dynamic Control

Result:

— 11—

dun(dx,ow)=—-J, J, — T YT 5o —T T sw

i U U AT (A7 i

(S’U,N((SCE, 510) = oy + ,GN(SSE‘ —+ nyéfw



Static Dynamic Control

Result:

— 11—

dun(dx,ow)=—-J, J, — T YT 5o —T T sw

iy U AT (A7 i

(S’U,N((SCE, 510) = oy + ,GN(SSE‘ -+ nyéfw

|

This feedback law gives the optimal control u for period N given
a perturbation in the state x and a perturbation in the static
control w all relative to a nominal (sub-optimal) trajectory.




Static Dynamic Control

By substituting the local optimal feedback law
dun(0z, dw) = ay + Bydz + yyow
into the original Taylor series for J we can eliminate dwu y

a —t ——1—t

_ | _ 1 _
J* 6z, 0w) = (T — §J? TT)+ T =TT T sz + (T, — T T, T. Yow

U Ul (T AT T Y 1 ¢

1 — =1
A —1—t
+§5$ (J-’I?-’f? o J-’I?'U Juu J:I;u e 1w

1 — =
)556 + §6wt(=]ww il J-‘w-‘u,J' ljt )(S’LU
——1—

‘|‘5$t(7:1:w — 7:1:11, S )5’&)

L U



Static Dynamic Control

Substituting the local optimal feedback law
dun(0z, dw) = ay + Bydz + yyow
into the original Taylor series for J we can eliminate dwu y

a —t ——1—t

_ | _ 1 _
J* 6z, 0w) = (T — §J? TT)+ T =TT T sz + (T, — T T, T. Yow

U Ul (T AT T Y 1 ¢

1 — =1
A —1—t
+§5$ (J-’I?-’f? o J-’I?'U Juu J:I;u e 1w

1 — =
)556 + §6wt(=]ww il J-‘w-‘u,J' ljt )(S’LU

——1—=t

‘|‘5$t(7:1:w — 7:1:11, S )5’&)

L U

Defining the coefficientsto be R, Q, S, P, W, and Y:

Al

1 1
J*(6z,6w) = R+ Q" 6z + S"6w + §5$tP5$ + aéth&w + 62"Y Sw



Static Dynamic Control

Substituting the local optimal feedback law
dun(0z, dw) = ay + Bydz + yyow
into the original Taylor series for J we can eliminate dwu y

a —t ——1—t

_ | _ 1 _
J* 6z, 0w) = (T — §J? TT)+ T =TT T sz + (T, — T T, T. Yow

U Ul (T AT T Y 1 ¢

1 — =1
A —1—t
+§5$ (J-’I?-’f? o J-’I?'U Juu J:I;u e 1w

1 — =
)556 + §6wt(=]ww il J-‘w-‘u,J' ljt )(S’LU

——1—=t

‘|‘5$t(7:1:w — 7:1:11, S )5’&)

L U

Defining the coefficientstobe R, Q, S, P, W, and Y-

1 1
J*(6z,6w) = R+ Q" 6z + S"6w + §5$tP5$ -+ aéth&w + 62"Y dw

Optimal value of J at time t, given the state and static control




Static Dynamic Control

Now, proceed to period N-1. Define the J for period N-1:

v
J(x(t),un_1,w,t) i/f\’ 1F($(T),u;\r_1,w,q—)dfr Integral cost
" over period N-
1



Static Dynamic Control
Now, proceed to period N-1. Define the J for period N-1:

IN—1

J(w(t),un_p,w,t) = [ F(a(r),un_1,w,7)dr

t
End of period

+G(2z(tvo1), un—1,w, tn—1, N—1) N-1point in
Time cost



Static Dynamic Control

Now, proceed to period N-1. Define the J for period N-1:
Far_
J(@(t), un g, w,t) = [77 F(a(r),un_y,w,7)dr
—FG(Q‘?(tN_l), UuN_1, W, tN—l; N—l)

+J*(6z, dw) Optimal objective for period N



Static Dynamic Control

Now, proceed to period N-1. Define the J for period N-1:

IN—1
J(@(t), un g, w,t) = [77 F(a(r),un_y,w,7)dr
_|_G($(tf\“r—1)) Uy—-1,w, tf\r—la N_]-)
+J 0z, dw)

By analogy to the method used for period N a locally optimal
law can be generated for period N-1:

ou  (0z,0w) =a  + B oz + 7 Jw



Static Dynamic Control

The process is repeated backward to generate locally optimal
feedback laws for u for periods N, N-1,...,1.

Period 1 must be handled differently in order to incorporate
the initial condition function and compute the optimal update
for the static control vector w.



Static Dynamic Control

The process is repeated backward to generate locally optimal
feedback laws for u for periods N, N-1,...,1.

Period 1 must be handled differently in order to incorporate

the initial condition function and compute the optimal update
for the static control vector w:

For period 1, the truncated Taylor series is:

-~

— _ _ 1 — — —
J(6z, 0uy, 6w) = T+ .02+ T 6ui + J. 6w+ 502" Tobr + 8! T buy + 6w’ T uduy

1. ,— 1 — —
‘|‘§5Uf1 S 5”1 + iéwtj-ww ow + 5$t=]:1:-w(swa



Static Dynamic Control

The process is repeated backward to generate locally optimal
feedback laws for u for periods N, N-1,...,1.

Period 1 must be handled differently in order to incorporate

the initial condition function and compute the optimal update
for the static control vector w:

For period 1, the truncated Taylor series is:

-~

— _ _ 1 — — —
J(6z, 0uy, 6w) = T+ .02+ T 6ui + J. 6w+ 502" Tobr + 8! T buy + 6w’ T uduy

ur

1. ,— 1 — —
‘|‘§5Uf1 S 5”1 + iéwtj-ww ow + 5$t=]:1:-w(swa

We can eliminate ox using a Taylor series expansion of the initial
condition function I

_ 1 _
0z (w) = I'yow + §5wtrwwéw



Static Dynamic Control

After dx eliminated:

t

~ — = ]_ el — ]_ — =
J(uy, 6wy = T+7 5'w—|—§5wt,]ww§fw—|—Jiéuﬁ—§§U§J.?L.?L§u1—|—§th,¢”“§11,1

w



Static Dynamic Control

Eliminating ox :

~ _ =t ]_ = — ]_ — Eadl
J(uy, dw) = T+ J,wc?fw—l—§5wt,]ww5w—|—Jiéul—l—iéuﬁ T ubu1+0w' T pudu

To find the optimal update for both ou and ou we must
simultaneously solve

e

o0J

—=0= ju, + fuwéw* + juu(suT
&u,l

s

aJ =~ =t =
— =0= J-w + J,“,w(S"UJT + J-w-w(sw*
ow ’



Static Dynamic Control

The locally optimal updates and feedback laws are applied
from period 1 forward. The feedback laws are damped if

necessary by a parameter € € (0,1] until the trajectory is
improved.

du; = ean

Period 1 updates
ow = €&

Period 2,3,...,N
5’11»-;; — €0 + 5?2555 + E’)/-;f feedback laws

Next new feedback laws are computed and applied to the
improved trajectory iteratively until convergence is obtained.
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Vesta

500 [km]; 5.3 hr rotation period
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Vesta Science Orbit Movies
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Slide credit: Marc Rayman



Dawn Approaches

Phase too high
. for pictures
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RC6

Vesta departure science
orbit planning

RC5 Escape Vesta
; 31.226114 days into flight
<€ August 26, 2012 8:26:42
Mass 942.9732 [kg]
Radius 14717.15 [km]

RC4

20.633333 days into flight
August 15, 2012 18:13: 6
Mass 943.9859 [kg]
Radius 4912.746 [km]

Energy(Vesta) —0.0015[km2.-'52]




Thrust off

[u] snipey Js[e0g

Time Past Start of Trajectory [days]



Vesta Resonance Movie






What if we missed the keyhole state?

« Spacecraft can “bounce”: thrust fails to reduce the orbital radius:
» Spacecraft can be driven up when you are trying to go down:

« The spacecraft orbit can have its plane torqued around

This is particularly dangerous for Dawn
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Science Orbits at Vesta:

High Altitude Mapping Orbit:
Altitude 680 [km]

Zl:tr'\t/ez O;;go k October 2011 and June 2012
. el Detailed spectral maps and
August 2011

topograph
Look for Moons, Pograpny

dust, First global
map

Low Altitude Mapping Orbit:
Altitude 200 [km]

December 2011-August 2012
Gamma ray and Neutron
Spectroscopy and Gravity Science
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Basic Structure of Optimal Control Problems

Start: state X(t=0)
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You make a control decision v(0)
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Basic Structure of Optimal Control Problems

Start: state X(t=0)

You make a control decision v(0)
This makes the state evolve to X(t=At)
You make a control decision v(At)
This makes the state evolve to X(t=2At)



Basic Structure of Optimal Control Problems

Start: state X(t=0)

You make a control decision v(0)
This makes the state evolve to X(t=At)
You make a control decision v(At)
This makes the state evolve to X(t=2At)

You make a control decision v((n-1)At)
This makes the state evolve to X(t,)



Basic Structure of Optimal Control Problems

Start: state X(t=0)

You make a control decision v(0)
This makes the state evolve to X(t=At)
You make a control decision v(At)
This makes the state evolve to X(t=2At)

You make a control decision v((n-1)At)
This makes the state evolve to X(t,)

Goal: find controls v(t) that optimize some objective
involving the states, controls, and time



Optimal Control Problems Versus Feedback

you simply react to the current state to decide
the control (example keeping your car in the center of the lane)

We have to do this in space flight also! Though when we steer
back into the “space lane” we actually solve a smaller optimal
control problem to do so.

has a time global view solving for all controls
that together maximize/minimize an objective (example:
choosing the best arrangement of roads to take to get from one
place to another to minimize trip time)

We solve optimal control problems in spaceflight to define the
roads we follow in space: Reference Trajectory



